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Construction A Non-associative Algebras

Last Time

• 1. A fully diverse space-time code is a family C of (square)
complex matrices such that det(X− X′) 6= 0 when X 6= X′.

2. Division algebras whose elements can be represented as
matrices satisfy full diversity by definition.

• 1. For coding for MIMO slow fading channels, joint design of an
inner and outer code.

2. The outer code is a coset code, which addresses the problem
of codes over matrices.

3. Connection between codes over matrices and codes over finite
fields.
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Construction A

• Let ρ : ZN 7→ FN
2 be the reduction

modulo 2 componentwise.

• Let C ⊂ FN
2 be an (N, k) linear

binary code.

• Then ρ−1(C ) is a lattice.

• Let ζp be a primitive pth root of
unity, p a prime.

• Let ρ : Z[ζp]N 7→ FN
p be the

reduction componentwise modulo
the prime ideal p = (1− ζp).

• Then ρ−1(C ) is a lattice, when C
is an (N, k) linear code over Fp.

• In particular, p = 2 yields the
binary Construction A.

What about a Construction A from division algebras?
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Ingredients

A Λ ⊃ pΛ

K OK ⊃ pOK

F OF ⊃ p

Q Z ⊃ p

〈σ〉

• Let K/F be a cyclic number field extension of
degree n, and rings of integers OK and OF .
Consider the cyclic division algebra

A = K ⊕ Ke ⊕ · · ·Ken−1

where en = u ∈ OF , and ek = σ(k)e for k ∈ K .

• Let Λ be its natural order

Λ = OK ⊕OKe ⊕ · · · ⊕ OKe
n−1.

• Let p be a prime ideal of OF so that pΛ is a
two-sided ideal of Λ.
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Skew-polynomial Rings

• Given a ring S with a group 〈σ〉 acting on it, the
skew-polynomial ring S [x ;σ] is the set of polynomials
s0 + s1x + . . .+ snx

n, si ∈ S for i = 0, . . . , n, with xs = σ(s)x
for all s ∈ S .

• Lemma. There is an Fpf -algebra isomorphism between Λ/pΛ
and the quotient of (OK/pOK )[x ;σ] by the two-sided ideal
generated by xn − u.
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Quotients

Λ ⊃ pΛ Λ/pΛ

OK ⊃ p pOK

OF OF ⊃ p

Z ⊃ p Z/pZ

〈σ〉

• There is an Fpf -algebra isomorphism

ψ : Λ/pΛ ∼= (OK/pOK )[x ;σ]/(xn − u).

• If p is inert, OK/pOK is a finite field
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Codes over Finite Fields

Λ/pΛ Fn
q

OK/p FN
pf

Z/pZ FN
p

• Let I be a left ideal of Λ, I ∩ OF ⊃ p. Then
I/pΛ is an ideal of Λ/pΛ and ψ(I/pΛ) a left
ideal of Fq[x ;σ]/(xn − u).

• Let f ∈ Fq[x ;σ] be a polynomial of degree n. If
(f ) is a two-sided ideal of Fq[x ;σ], then a
σ-code consists of codewords
a = (a0, a1, . . . , an−1), where a(x) are left
multiples of a right divisor g of f .

• Using ψ : Λ/pΛ ∼= Fq[x ;σ]/(xn − u), for every
left ideal I of Λ, we get a σ-code C = ψ(I/pΛ)
over Fq.

[ D. Boucher and F. Ulmer, Coding with skew polynomial rings]
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Codes over Finite Rings

Λ/pΛ (OK/pOK )n

OK/p (OK/pOK )N

Z/pZ FN
p

• Let g(x) be a right divisor of xn − u. The ideal
(g(x))/(xn − u) is an OK/pOK -module,
isomorphic to a submodule of (OK/pOK )n. It
forms a σ-constacyclic code of length n and
dimension k = n − degg(x), consisting of
codewords a = (a0, a1, . . . , an−1), where a(x) are
left multiples of g(x).

• A parity check polynomial is computed.

• A dual code is defined.

[ Ducoat-O., On Skew Polynomial Codes and Lattices from Quotients of Cyclic
Division Algebras]
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Lattices

Λ/pΛ (OK/pOK )n ⊃ C

OK/p FN
p ⊃ C

Z/pZ FN
p ⊃ C

• Set the map :

ρ : Λ→ ψ(Λ/pΛ) = (OK/pOK )[x ;σ]/(xn − u),

compositum of the canonical projection
Λ→ Λ/pΛ with ψ.

• Set
L = ρ−1(C ) = I.

• Then L is a lattice, that is a Z-module of rank
n2[F : Q].
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Example (I)

• Let K = Q(i) and F = Q. Then OF = Z and OK = Z[i ].

• Set p = 3, inert in Q(i), and Z[i ]/3Z[i ] ' F9.

• Let Q be the quaternion division algebra

Q = Q(i)⊕Q(i)e, e2 = −1.

• Set Λ = Z[i ]⊕ Z[i ]e and I = (1 + i + e)Λ.

• Let α ∈ F9 over F3 satisfy α2 + 1 = 0.

• We have
ψ((1 + i + e)mod3) = 1 + α + x ,

which is a right divisor of x2 + 1 in F9[x ;σ]. Therefore, the
left ideal (x + 1 + α)F9[x ;σ]/(x2 + 1) is a central σ-code.

• Taking the pre-image by ψ, it corresponds to the left-ideal
I/3Λ, with I = Λ(1 + i + e).
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Example (II)

• For q = a + be in Z[i ]⊕ Z[i ]e ⊂ Q, a, b ∈ Z[i ]

M(q) =

[
a −b̄
b ā

]
where ·̄ is the non-trivial Galois automorphism of Q(i)/Q.

• M(q) used as codeword for space-time coding.

• Let t = (a + be)(1 + i + e) be an element of
I = Λ(1 + i + e). Then

M(t) =

[
a(1 + i)− b −(a + b(1 + i))

a + b(1− i) a(1− i)− b

]
.

• Then I = ρ−1(C ) is a real lattice of rank 4 embedded in R8.
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Coset Encoding

• Let v = (v1, . . . , vn) be an information vector to be mapped
to a lattice point in L.

• The lattice L = ρ−1(C ) = IΛ is a union of cosets of pΛ, each
codeword in C is a coset representative.

• Coset encoding: v1, . . . , vk are encoded using the code C , and
the rest of the information coefficients are mapped to a point
in the lattice pΛ.

• Coset encoding is necessary for wiretap codes: information
symbols are mapped to a codeword in C , while random
symbols are picked uniformly at random in the lattice pΛ to
confuse the eavesdropper.

• The lattice L = ρ−1(C ) = I thus enables coset encoding for
wiretap space-time codes.
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Summary

• Cyclic division algebras are useful for space-time coding.
Some applications require to understand quotients of cyclic
division algebras.

• The view point of skew-polynomial rings.

• Construction A of lattices from codes over skew-polynomial
rings.

• Further work:

1. Study the lattice properties inherited from codes.
2. Study the space-time codes obtained.
3. Study constacyclic codes over (OK/pOK )[x ;σ]/(f (x)), and

duality with respect to a Hermitian inner product.
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Construction A
The non-commutative case

Non-associative Algebras



Construction A Non-associative Algebras

Non-associative Quaternions Algebras: Definition

• Take F a field of characteristic not 2, and K a quadratic
extension of F , with non-trivial Galois automorphism σ.Take
γ ∈ K\F .

• Define an algebra structure on the F -vector space K × K via
the multiplication

(u, v)(u′, v ′) := (uu′+ γv ′σ(v), σ(u)v ′+ u′v), u, u′, v ′v ′ ∈ K .

• Similar to associative quaternions, but for γ ∈ K\F , which
makes the multiplication not associative anymore.

• The algebra A is called a non-associative quaternion algebra
over F . It is a division algebra.
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Non-associative Quaternions Algebras: Coding

• In the associative case, codewords are obtained by left regular
representation over a maximal subfield K . How to obtain it
for A a non-associative F -algebra?

• Let K be a subfield of A. For A to be a right K -vector space,
it is sufficient to have K ⊂ Nr (A) or K ⊂ Nm(A):

Nr (A) = {x ∈ A|[A,A, x ] = 0}, [x , y , z ] = (xy)z − x(yz).

• That the left multiplication λa is a linear endomorphism of the
right K -vector space A is equivalent to have K ⊂ Nl(A).

• Take K ⊂ Nr (A) ∩Nl(A) or K ⊂ Nm(A) ∩Nl(A), which is
maximal with respect to inclusion. Consider A as a right
K -vector space. We get an embedding

λ : A→ Matr (K ), a 7→ λa

of vector spaces, r = dimK (A).
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An Example of Non-associative codebook

• Take K = F (
√
a) = F (i), γ ∈ K\F , and A a nonassocative

quaternion divison algebras. Set j = (0, 1). Then A has
F -basis {1, i , j , ji} such that i2 = a, j2 = b and xj = jσ(x) for
all x ∈ K .

• Consider the K -basis {1, j} of A. We have an embedding
λ : A→ Mat2(K ) which sends x ∈ A to the matrix of λx in
the basis {1, j}.

• This gives the codebook{(
x0 γσ(x1)
x1 σ(x0)

)
, x0, x1 ∈ K

}
.

[ S. Pumplün, T. Unger, “Space-Time Block Codes from Nonassociative

Division Algebras.” ]
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Take Home Message (I)

1. Space-time coding= Families of square complex matrices, to
be transmitted over multiple antenna channels.

2. Good space-time codes = codes with full diversity, can be
obtained as multiplication matrices coming from cyclic
division algebras.

3. Codes with high minimum determinant are obtained by
restricting matrix coefficients to rings of integers of number
fields.

4. Recent constructions using cyclic, crossed-products,
non-associative algebras.
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Take Home Message (II)

1. Concatenated Space-time coding using quotients of
space-time codes. Connections with codes over finite
fields/rings. Joint design?

2. Construction A for space-time codes.



Construction A Non-associative Algebras

Take Home Message (II)

1. Concatenated Space-time coding using quotients of
space-time codes. Connections with codes over finite
fields/rings. Joint design?

2. Construction A for space-time codes.



Construction A Non-associative Algebras

Open Questions

1. Space-time block code modulation: characterization of
quotients, weights and codes.

2. Construction A: lattices, space-time codes, constacyclic codes.
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Thank you for your attention!
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